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ABSTRACT: This paper evaluates the reliability of lumber, accounting for the duration-of-
load (DOL) effect under different load profiles based on a multimodel Bayesian approach.
Three individual DOL models previously used for reliability assessment are considered: the
US model, the Canadian model, and the Gamma process model. Procedures for stochastic
generation of residential, snow, and wind loads are also described. We propose Bayesian
model-averaging (BMA) as a method for combining the reliability estimates of individual
models under a given load profile that coherently accounts for statistical uncertainty in the
choice of model and parameter values. The method is applied to the analysis of a Hemlock
experimental dataset, where the BMA results are illustrated via estimated reliability indices
together with 95% interval bands.

1 INTRODUCTION

The strength of lumber and wood products
may weaken over time as a result of ap-
plied stresses. This phenomenon is known
as the duration-of-load (DOL) effect, and is
an important factor to consider in ensuring
the long-term reliability of wood-based struc-
tures. For practical reasons, experiments de-
signed to assess DOL effects typically involve
accelerated testing over a limited time period,
e.g., up to a maximum of a few years. Thus,
to compute DOL effects for return periods of
50 years or longer, models are needed.

Various probabilistic models have been de-
veloped for this purpose, with parameters that
are calibrated from experimental data. As ex-
amples in recent reliability analyses, a study
of laminated veneer lumber used the Gerhards
damage accumulation model (Gilbert et al.,
2019), a study of cross laminated timber used
the Foschi damage model (Li & Lam, 2016),

and a study of Western hemlock sawn lumber
used a degradation model derived from the
Gamma process (Wong & Zidek, 2019). To
account for the effects of model assumptions,
it can be useful to assess reliability with dif-
ferent models, for example as considered in
Hoffmeyer and Sørensen (2007), Köhler and
Svensson (2011), Wong (2020).

For a given model, its parameters must be
estimated from data, and this uncertainty in
the parameter values in turn leads to uncer-
tainty in the computed reliability values. A
Bayesian statistical approach for DOL model-
ing was presented in Yang et al. (2019), which
has the advantage of coherently accounting
for parameter uncertainty in reliability calcu-
lations. Nonetheless, that approach assumes
that a specific model has been chosen for the
analysis. The goal of this paper is to extend
the Bayesian modeling framework to com-
bine reliability values computed from multi-
ple DOL models. In doing so, we may com-
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pute final reliability estimates that account for
both parameter and model uncertainty. The
proposed multimodel framework is illustrated
on construction lumber using stochastic occu-
pancy, snow, and wind loads, with load spec-
ifications adapted from the National Building
Code of Canada (NBCC) and previous stud-
ies.

2 METHODS

2.1 Models for degradation and reliability

We begin by defining the damage over time
for a lumber specimen via a non-decreasing
function α(t) for time t ≥ 0, where α(0) =
0 signifies no damage initially and α(T ) = 1
when the specimen fails at the random time
T . Also, let τ(t) denote the load applied to
the specimen at time t.

Three DOL models are considered in this
paper, which are briefly overviewed as fol-
lows. The first is known as the ‘US model’
and due to Gerhards (1979), which specifies

d
dt

α(t) = exp
(
−A+B

τ(t)
τs

)
, (1)

where A and B are model parameters and τs
is the short-term strength of the specimen.
The parameter τs is further assumed to have a
lognormal distribution, i.e., τs = τM exp(wZ)
where w is a scale parameter, Z is a standard
Normal random variable, and τM is the me-
dian strength of the lumber population of in-
terest.

The second DOL model is known as the
‘Canadian model’ and due to Foschi & Bar-
rett (1982), which in reparametrized form
specifies

d
dt

α(t) = [(aτs)(τ(t)/τs −σ0)+]
b

+[(cτs)(τ(t)/τs −σ0)+]
nα(t) (2)

where a, b, c, n, σ0 are random effects spe-
cific to each specimen and assumed to follow
lognormal distributions.

The third DOL model is a degradation
model based on the Gamma process, as pro-
posed in Wong & Zidek (2019): α(t) is as-
sumed to follow a Gamma process, so that

the damage from time t1 to t2 has a gamma
distribution with scale parameter ξ and shape
parameter η(t2)−η(t1) where η(t) is a non-
decreasing function that depends on τ(t). Let
τ∗ be a threshold below which no degradation
occurs, and u a scaling parameter. Then the
model for the shape parameter is

η(t) = u
m

∑
i=1

g(t̃i) [(τi − τ∗)+− (τi−1 − τ∗)+] (3)

where 0 = τ0 < τ1 < τ2 < · · · < τm is a se-
quence of discretized load increments that
spans the range of possible loads applied, and
t̃i is the total time duration for which τ(t) ex-
ceeds τi. Then, an increasing function g(·)
models the DOL effect. In Wong (2020),
a piecewise power law was adopted, so that
g(t) ∝ (t/ti)aai for ti−1 < t ≤ ti, where t0 = 0
and t1, t2, . . . is a sequence of time breakpoints
and a1,a2, . . . are the corresponding power
parameters.

2.2 Assessing reliability

Given a model and a set of parameter values,
we may assess the long-term failure proba-
bility (taken to be 50 years in this paper) of
a structural member under various types of
loads. A stochastic load profile is simulated
according to

τ(t) = ϕRo
γD̃d + D̃l(t)

γαd +αl
, (4)

where ϕ is the performance factor and Ro is
the characteristic strength of the lumber pop-
ulation considered. Further, D̃d and D̃l(t) rep-
resent standardized dead and live loads, γ =
0.25 is the dead-to-live load ratio, αd = 1.25
and αl = 1.5 are from the NBCC 2015 edi-
tion. D̃d is assumed to be normally distributed
with mean 1.05 and standard deviation 0.1
which represents the weight of the structure
and is fixed over time, while D̃l(t) can dy-
namically change over time and is simulated
according to the specific type of load consid-
ered (see Section 2.3). For a simulated τ(t),
the corresponding model equation, i.e., (1),
(2), or (3), is used to predict whether the spec-
imen fails by the end of 50 years.
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2.3 Generating stochastic load profiles

We describe the procedures for simulating the
three different load types for D̃l(t) consid-
ered in this paper. Unless otherwise stated,
numerical constants below are obtained from
the cited references, wherein they were cali-
brated to data and surveys from various Cana-
dian cities.

2.3.1 Residential load

Live loads for residential occupancy are mod-
eled as the sum of two components – sus-
tained and extraordinary – so that D̃l(t) =
D̃s(t) + D̃e(t) (Foschi et al., 1989, Gilbert
et al., 2019). We simulate a sequence of in-
dependent exponential random variables each
with mean 10 years; during each of these pe-
riods D̃s(t) is independently simulated from
a gamma distribution with shape parameter
3.122 and scale parameter 0.0481, represent-
ing the sustained load of the occupant(s). For
D̃e(t), we similarly simulate exponential ran-
dom variables to obtain periods with no ex-
traordinary load (each with mean 1 year), al-
ternating with short periods (each with mean
2 weeks) where an extraordinary load is sim-
ulated from a gamma distribution with shape
parameter 0.826 and scale parameter 0.1023.

2.3.2 Snow load

Snow load refers to the additional load ap-
plied to the roof of a building as a result of
snowfall. Note that the amount of snow build-
up per unit area on flat ground tends to differ
from that of the roof of a building, due to fac-
tors that include the shape or slope of the roof,
wind exposure, and melting. We refer to the
former as ‘ground snow load’, and the latter
as ‘roof snow load’ or simply snow load. A
typical snow load model begins by consider-
ing the annual maximum ground snow load
G, which is assumed to be Gumbel distributed
with a bias of Ḡ and a coefficient of variation
(CoV) denoted CoV(G) (Foschi et al., 1989).
A random value G∗ from a Gumbel distribu-

tion G can be simulated using the formula

G∗ = B+
− log(− log(p))

A
(5)

where A = 1.282/(CoV(G) × Ḡ), B =
Ḡ − (0.577/A) and p is a random value
drawn from the standard uniform distribution
U(0,1). The load associated with 50-year re-
turn period, denoted by G50, is calculated by
letting p = 49/50 in (5); in other words, G50
is the 0.98 quantile of the probability distri-
bution of G. Calculated values of A and B are
provided in Foschi et al. (1989) for various
Canadian cities based on their snow histories,
and reproduced in Table 1.

Table 1: Ground snow load parameters for various
Canadian cities.

City A B
Vancouver 0.0977 5.0123
Halifax 0.1028 19.4276
Arvida 0.1255 29.4438
Ottawa 0.1082 20.8780
Saskatoon 0.1695 15.4561
Quebec City 0.3222 17.0689

The duration of winter is assumed to be
five months of the year (from November 1 to
April 1), and there is assumed to be no snow
in the other seven months of the year (Foschi
et al., 1989). For simulation purposes, each
winter is divided into NS segments of equal
duration. Then within each segment, there is
a certain probability of snow; if snow occurs
in a segment, the ground snow load is sim-
ulated from a Gumbel distribution, where all
the segment loads are assumed to be indepen-
dent and identically distributed. These steps
are detailed as follows.

First, the probability that there is no snow
for an entire winter denoted by p0 is cal-
culated as p0 = e−eAB

, obtained by setting
G∗ = 0 in (5). Equivalently, this means there
is no snow in all NS segments that year, so
the probability of snow in one segment de-
noted by pe must satisfy (1.0− pe)

NS = p0,
and so pe = 1.0 − exp

[
− 1

NS
exp(AB)

]
. If a
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segment has snow, then the ground snow load
for the segment, denoted Gs, can be simulated
according to

Gs = B+
1
A
[− log(−NS · p̃)] , (6)

where p̃ = log(1− pe + pe p) and p is a ran-
dom uniform number U(0,1).

Second, define gs =Gs/G50 as the the stan-
dardized ground snow load, that is, the ratio
of a segment ground snow load Gs to the 50-
year return period load G50. A random value
for gs is simulated by

gs = B′+
1
A′ [− log(−NS · p̃)] , (7)

where B′ = AB/(AB+3.9019) and A′ = AB+
3.9019 (i.e., 3.9019 = log(− log(49/50))).

Third, following Bartlett et al. (2003) the
standardized snow load qs on the roof of a
building is modelled as qs = r ·gs, where r is
the ground-to-roof snow load transformation
factor, assumed to have a log-normal distribu-
tion with a bias of 0.6 and a CoV of 0.42.

For practical implementation, we set the
number of segments per winter to be NS = 10,
so that the length of each segment is a half-
month. To summarize, for each segment we
simulate a random number rn from the stan-
dard uniform distribution U(0,1). If rn < pe,
then a random snow load qs is simulated and
in (4) we set the live load D̃l(t) = qs for that
segment. Otherwise, the snow load is zero for
that segment and we set D̃l(t) = 0. For the
non-winter portion of the year, D̃l(t) = 0.

2.3.3 Wind load

Wind loads refer to the pressure of wind
against the surface of a building. A model
for the annual maximum wind load W has
been previously conceptualized as the prod-
uct of four random variables (Bartlett et al.,
2003), W = ζCeCpCg, where ζ is the refer-
ence velocity pressure, Ce is the exposure fac-
tor, Cp is the external pressure coefficient and
Cg is the gust factor. Following Bartlett et al.
(2003), we define η =CeCpCg to be the com-
bination of exposure, pressure coefficient and

gust, which is assumed to have a log-normal
distribution with a bias of 0.68 and a CoV of
0.22. Then ζ is determined by ζ = 1

2ρV 2,
where ρ is the density of air and treated as a
constant (1.2929kg/m3 for dry air at 0◦ Cel-
sius), while V is the wind velocity and mod-
eled with a Gumbel distribution.

Bartlett et al. (2003) provides calibrated
values for the Canadian cities Regina,
Rivière-du-Loup and Halifax: the Gumbel-
distributed annual maximum wind velocity V
has a bias of (1+ 3.050 ·CoVa)/(1+ 2.592 ·
CoVa), where the corresponding CoVa for
the three cities are 0.108, 0.170, and 0.150,
respectively. The standardized wind load w,
defined as the ratio of W to the wind load for
a 50-year return period W50, is then given by

w =
W

W50
=

V 2η
(V 2η)50

, (8)

where V and η are simulated from their
respective Gumbel and log-normal distribu-
tions, and (V 2η)50 = 1.5913 is the 0.98 quan-
tile of the probability distribution for V 2η ob-
tained via Monte Carlo simulation.

Wind loads occur over relatively short pe-
riods and only the strong winds are typically
considered (Gilbert et al., 2019). Thus, we
simulate an independent sequence of values
for w according to (8), which represent the
live load D̃l(t) in (4) during the periods of
strong winds that correspond to the annual
maximum of each year. These wind loads
have duration 3 hours (Bartlett et al., 2003),
and we assume that they occur at a random
time once per year. Between these occur-
rences, we set D̃l(t) = 0.

Figure 1 plots examples of simulated
stochastic live loads over a 50-year period: (a)
residential load, (b) snow load in Vancouver,
(c) snow load in Quebec City, (d) wind load
in Halifax, as discussed in this section. The
dead load, which is fixed for the lifetime of
the structure, is not included in these plots.

2.4 Bayesian multimodel approach

We first review the Bayesian approach to
assess reliability for an individual (single)
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Figure 1: Examples of stochastic live loads in a 50-year period: (a) residential loads, (b) snow load in Vancouver,
(c) snow load in Quebec City, (d) wind load in Halifax. Dead load is not included in these plots.

model. Let ∆ = 1 if a lumber specimen fails
within a given timeframe (e.g., 50 years un-
der a chosen load profile) and ∆ = 0 other-
wise. Then for a given reliability model with
parameters θ , the failure probability is

pF = g(θ) = Pr(∆ = 1 | θ). (9)

By writing pF = g(θ), we emphasize the fact
that the failure probability is a function of θ .
Since the true value of θ is unknown, it must
be estimated from a sample of observed data
y = (y1, ...,yn) (e.g., observed failure times
in an accelerated testing experiment). In a
Bayesian context, this is achieved by specify-
ing a prior distribution p(θ), from which we

obtain the posterior distribution

p(θ | y) =
p(y | θ)p(θ)

p(y)
. (10)

The Bayesian estimator of pF is then the pos-
terior failure probability given the data,

p̂F = Pr(∆ = 1 | y)

=
∫

Pr(∆ = 1 | θ)p(θ | y)dθ .
(11)

Typically the integral in (11) cannot be evalu-
ated in closed form; rather it is stochastically
approximated in the following steps:

1. Obtain draws θ (1), . . . ,θ (N) from p(θ |
y). This is usually done via Markov
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chain Monte Carlo (MCMC) sampling
techniques.

2. For each draw θ (i) generate Nprof = 105

stochastic load profiles using the meth-
ods of Section 2.3, and let ∆i j = 1 if
load profile j resulted in a failure and
∆i j = 0 otherwise. The failure probabil-
ity p(i)F = Pr(∆ = 1 | θ (i)) is then approx-
imated as

p(i)F ≈ 1
Nprof

Nprof

∑
j=1

∆i j. (12)

3. Finally, the Bayesian estimator of pF is
approximated by

p̂F ≈ 1
N

N

∑
i=1

p(i)F . (13)

Note that this Bayesian failure probability
estimator can in fact be written as

p̂F = Pr(∆ = 1 | y) = E[pF | y], (14)

i.e., p̂F is the expected value of pF under
the posterior failure probability distribution
p(pF | y) = p(g(θ) | y). In this sense, we
may quantify the statistical uncertainty about
pF by calculating the 95% credible interval;
namely, the 2.5% and 97.5% quantiles of
p(pF | y). These are readily computed by tak-
ing the 2.5% and 97.5% sample quantiles of
p(1)F , . . . , p(N)

F obtained in Step 2 above.
The Bayesian estimator and credible inter-

val described above apply to a single model
for failure probability. The purpose of mul-
timodel Bayesian inference is to combine in-
formation from several candidate models into
the estimation of pF . Consider a set of K can-
didate models M1, . . . ,MK , with correspond-
ing parameter vectors θ 1, . . . ,θ K , and prior
distributions p(θ k | MK). Let p(Mk) denote
the prior probability that the true model is Mk,
such that ∑K

k=1 p(Mk) = 1. Then the Bayesian
model-averaging (BMA) estimate of failure
probability is

p̂F = Pr(∆ = 1 | y)

=
K

∑
k=1

Pr(∆ = 1 | Mk,y)p(Mk | y) (15)

where Pr(∆= 1 |Mk,y) is the posterior failure
probability given the data for each model Mk
as given by (11), and

p(Mk | y) =
p(y | Mk)p(Mk)

∑K
l=1 p(y | Ml)p(Ml)

(16)

is the posterior probability that the true model
is Mk. As was the case for the single model
estimator, the BMA estimator p̂F = E[pF | y]
is the mean of the posterior failure probability
distribution

p(pF | y) =
K

∑
k=1

p(pF | Mk,y)p(Mk | y), (17)

which leads to the following stochastic ap-
proximation for p̂F and its credible interval
under BMA:

1. For each model Mk, follow the single-
model setup to obtain MCMC draws
and corresponding failure probabili-
ties via (12), which we denote by
θ (1)

k , . . . ,θ (N)
k and p(ik)F respectively.

2. Calculate the posterior model probabil-
ity p(Mk | y). Since this calculation is
analytically intractable except in a few
special cases (e.g., Raftery et al., 1997),
instead we use the approximation

p(Mk | y)≈ exp(−BICk/2)p(Mk)

∑K
l=1 exp(−BICl/2)p(Ml)

,

(18)

where BICk is the Bayesian information
criterion (BIC) (e.g., Kass & Raftery,
1995):

BICk =−2log p(y | θ̂ k,Mk)

+dim(θ k) log(n), (19)

where θ̂ k is the maximum likelihood es-
timate of θ k, dim(θ k) is the number of
parameters in model Mk, and n is the
sample size of the observed data y.

3. Draw Z1, . . . ,ZN from a categorical dis-
tribution on K integers such that Pr(Zi =
k) = p(Mk | y) as calculated in (18), and
let p(i)F for BMA be defined as

p(i)F = p(iZi)
F , i = 1, . . . ,N. (20)
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4. Finally, analogous to the single-model

setup, we now approximate the BMA es-
timator of pF in (17) by

p̂F ≈ 1
N

N

∑
i=1

p(i)F . (21)

This is justified by the fact that
p(1)F , . . . , p(N)

F are draws from the BMA
posterior distribution (17). We may thus
construct the BMA 95% credible inter-
val for pF by computing the 2.5% and
97.5% sample quantiles of p(1)F , . . . , p(N)

F
obtained in Step 3, in the same way as
for the single-model setup.

3 RESULTS

3.1 Experimental data

The data used for computing reliability val-
ues in this paper are the lumber sample spec-
imens from the western Hemlock experiment
first described in Foschi & Barrett (1982).
To summarize briefly, the specimens were di-
vided into ramp load and constant load groups
to maintain a similar distribution of modulus
of elasticity across groups. In a ramp load
test group, the load was increased linearly
over time t at a given rate τk until the spec-
imen failed, that is τ(t) = τkt. In a constant
load test group, the load first increased at rate
τk until reaching the constant load level τc,
that is τ(t) = τkt for 0 ≤ t ≤ τc/τk; then the
load was maintained at τc until the specimen
failed or the end of the testing time period
was reached (this ranged from 3 months to
4 years, depending on the group). The con-
stant load specimens that survived to the end
of the testing period were then broken using
a ramp load test, see Wong (2020) for details.
The characteristic strength Ro for this popu-
lation is taken to be 20.68 MPa, which is its
empirical 5th percentile.

3.2 Model fitting

The parameters of the three models described
in Section 2.1 – the US, Canadian, and
Gamma process models – were calibrated to

the experimental data using the techniques
described in Wong (2020). Given the fail-
ure time y j for each data specimen j, the load
function τ j(t) applied to that specimen, and
the model parameters θ k,k = 1,2,3 for model
k, the likelihood function for model k is given
by

Lk(θ k | y) =
n

∏
j=1

pk(y j | τ j(t),θ k), (22)

where y = (y1, . . . ,yn) and the specific form
of each model is derived in Wong (2020).

For each model, N = 500 sets of parameter
values θ (1)

k , . . . ,θ (N)
k were sampled from the

posterior distribution pk(θ k | y), for the pur-
pose of estimating pF as described in Section
2.4. Sampling from the posterior for the US
and Gamma process models was performed
using MCMC techniques, with a Laplace ap-
proximation applied to the US model poste-
rior to facilitate computations. For the in-
tractable likelihood function of the Canadian
model, an approximate Bayesian computa-
tion (ABC) technique was used (Yang et al.,
2019). Posterior means and 95% credible in-
tervals for all model parameters are presented
in Tables 2-4 as obtained by Wong (2020).

Table 2: Parameter estimates for the US model.

Parameter Post. Mean 95% Cred. Interval
A 68.5 (65.0,71.9)
B 79.7 (75.9,83.4)
w 0.426 (0.421,0.431)

3.3 Reliability assessment

Suppose the probability of failure pF is pro-
vided for a given performance factor ϕ and
stochastic load profile in (4). The first or-
der reliability method (see e.g., Madsen et al.,
2006) converts pF into a reliability index β =
−Φ−1(pF), where Φ is the standard Normal
cumulative distribution function. By comput-
ing β for a range of values of ϕ , we obtain a
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Table 3: Parameter estimates for the Canadian model.

Parameter Post. Mean 95% Cred. Interval
µa −12.6 (−13.2,−12.2)
σa 0.41 (0.16,0.43)
µb 3.66 (2.99,4.11)
σb 0.09 (0.06,0.30)
µc −46.4 (−58.9,−13.0)
σc 0.21 (0.06,0.87)
µn −1.89 (−2.38,0.09)
σn 0.33 (0.06,0.55)
µσ0 0.39 (−0.93,0.90)
σσ0 0.15 (0.07,0.50)

Table 4: Parameter estimates for the Gamma process
model.

Parameter Post. Mean 95% Cred. Interval
u 0.084 (0.077,0.104)
a1 3.7×10−9 (4.6×10−14,2.1×10−3)

a2 0.027 (0.018,0.028)
a3 0.094 (0.054,0.103)
t1 0.00144 (0.00015,0.00493)
t2 2327 (289,2890)
τ∗ 4.35 (0,4.45)
ξ 0.27 (0.20,0.30)

curve that describes the relationship between
β and ϕ .

Reliability estimates in the form of ϕ − β
curves are displayed in Figure 2, for the dif-
ferent load profile scenarios described in Sec-
tion 2.3. The broken black lines display the
Bayesian posterior mean estimate β̂ (k) for
each model k = 1,2,3, which is calculated as

β̂ (k) =
1
N

N

∑
i=1

β (ik) =
1
N

N

∑
i=1

−Φ−1(p(ik)F ), (23)

where p(ik)F is the failure probability for pa-
rameter set θ (ik) as computed in Section 2.4
for each individual model. Here, the specific
load profile scenario and value of ϕ will gov-
ern the simulated loads in (4), and in turn the
failure probability obtained from (12).

The solid black lines in Figure 2 corre-
spond to the multimodel BMA estimate of
β . Also displayed in grey are the BMA 95%
credible intervals. To obtain these, we take

p(i)F in (20) and compute β (i)=−Φ−1(p(i)F ) so
that β (1), . . . ,β (N) are draws from the BMA
posterior distribution. Then the BMA esti-
mate and 95% credible intervals for β are
calculated in the same way as for pF de-
scribed in Section 2.4, i.e., by taking the mean
and 2.5%/97.5% quantiles of β (1), . . . ,β (N).
The BICs calculated for the US, Canadian
and Gamma process models are -5898, -6188
and -6184, respectively (Wong, 2020). Un-
der the equal probability prior p(Mk) = 1/3,
k = 1,2,3, the posterior probabilities (18) of
the US, Canadian, and Gamma process mod-
els are 0.00, 0.88, and 0.12, respectively.
The negligible posterior probability of the US
model is due to its BIC being significantly
higher than that of the other two models, indi-
cating that the US model provides a compar-
atively poor fit to the data.

In all four load profile scenarios in Figure
2, the Canadian model is the most optimistic
among the three individual models (i.e., es-
timating the highest β ), while the Gamma
process model estimates a noticeably lower
reliability index than the others. The BMA
estimates are closer to those of the Cana-
dian model than those of the Gamma process
model, since the Canadian model accounts for
most of the posterior model probability mass
(88%). Overall, the BMA 95% credible in-
tervals contain all the estimates of the indi-
vidual models. Interestingly, the BMA and
US model estimates in the residential load
scenario are very similar, even though the
US model has zero posterior probability and
therefore does not contribute to the BMA es-
timate.

The results across the different scenarios
allow us to make several observations:

1. The reliability indices computed for
snow loads in Vancouver are consis-
tently higher than for Quebec City. This
is a sensible result since Quebec City
typically has a colder and snowier winter
than Vancouver.

2. The reliability index β under residen-
tial loads is higher than the other three
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Figure 2: Reliability analysis results under (a) residential load, (b) snow load in Vancouver, (c) snow load in Quebec
City, (d) wind load in Halifax. The black lines show the estimated ϕ −β curves for the US model, Canadian model,
Gamma process model, and BMA. The grey shaded regions represent 95% credible intervals obtained from BMA.

load profile scenarios for the same val-
ues of ϕ . Referring to Figure 1, we see
that the sustained component of residen-
tial loads is relatively low and its ex-
traordinary component tends to be less
extreme than the peak live loads due to
snow and wind. This coincides with our
understanding that most of the damage
to specimens, and hence failures, occur
during the relatively short periods when
they experience the highest peak loads
(Murphy et al., 1987).

3. Evidence of the DOL effect can be seen
by comparing the snow load scenario in

Quebec City and the wind load scenario
in Halifax. While the peak loads for
these two scenarios are similar (see Fig-
ure 1, bottom panels), snow loads are
sustained for a relatively longer duration
(e.g., half a month or more) compared
to wind loads which are nearly instanta-
neous (with duration 3 hours in the sim-
ulation). Thus, it is sensible that β in
the Quebec City snow load scenario is
lower than that of the wind load scenario
in Halifax, as more damage occurs from
the longer duration of the snow loads.
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4 CONCLUSION

This paper presented a multimodel Bayesian
approach for the reliability analysis of lum-
ber products that are susceptible to load dura-
tion effects. The main advantage of the pro-
posed BMA method is its ability to coherently
account for both model and parameter uncer-
tainty in the reliability estimates. Rather than
having to choose a specific model, practition-
ers may run the analyses with multiple mod-
els and produce a combined estimate and 95%
interval via BMA. This is of practical impor-
tance since DOL models tend to use acceler-
ated test data to assess long-term reliability,
and results may be sensitive to the assump-
tions of individual models. BMA provides
a solution by producing a combined estimate
and range of outcomes according to the like-
lihood of each model. We demonstrated the
utility of BMA by taking models fitted to a
Hemlock dataset and assessing the reliability
of that lumber population under residential,
snow and wind loads.
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